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An examination of the application of the Riccati transformation method to an odd order 
differential system over a semi-infinite interval is described. An inherent flexibility of the 
method is exploited to yield a formulation which proves to be efficient, accurate, and 
straightforward in application. The present limitations of the method for general use on 
this type of problem are outlined. 

1. INTRODUCTION 

The Riccati transformation method for the computation of eigenvalues of a system 
of linear ordinary differential equations was first introduced by Scott [I]. He consi- 
dered a system of the form 

du/dz = A(z, u) u + B(z, u) v, 

-(dv/dz) = C(z, 0) u + D(z, cr) v, 
(1) 

subject to the linear separated boundary conditions 

u(0) = 0, u(x) = 0, or v(x) = 0. (2) 

Here u and v are n-vectors and A(z, u), B(z, u), C(z, a), and D(z, u) are n x n real 
matrices which depend on the independent variable z and some scalar parameter U. 

Scott described the evaluation of eigenvalues via the related problem of calculating 
characteristic lengths of the system. A characteristic length of the system is defined 
to be a positive value z = x for which a nontrivial solution exists when u takes a 
prescribed value. For specified X, an eigenvalue is obtained by establishing. in an 
interpolative manner, that u for which x is a characteristic length. The method locates 
characteristic lengths by transforming (1) to an associated system of nonlinear Riccati 
differential equations which are integrated from z = 0 using known initial conditions 
on all elements. As the integration of this initial-value problem proceeds, characteristic 
lengths are located by applying a simple criterion to the elements of the Riccati 
system. 

Sloan and Wilks [2] extended the above method to be used with general separated 
boundary conditions with 12 conditions at either end of a finite interval. It is natural 
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to inquire into the possibility of extending the method to deal with problems, with 
n > I, contravening these specifications. In particular one might consider the possible 
application to eigenvalue problems involving infinite or semi-infinite intervals or 
involving odd ordered systems. Scott [3] solved an eigenvalue problem on a semi- 
infinite interval for the scalar case n = 1 and Alspaugh [4] used the Riccati transfor- 
mation to solve linear two-point boundary-value problems also on an infinite interval. 
Equation (1) and boundary conditions (2) form a basis for work in subsequent 
chapters of this paper and salient features from [l, 2, 31 are outlined in the next 
chapter. 

By examining a problem already well documented in the literature of perturbation 
analysis in boundary layer theory, the work that follows illustrates the possibilities of 
extension of the method to such circumstances. The problem, that of computing the 
eigenvalues arising out of perturbations of the Blasius profile, involves, however, 
not only an odd order system over a semi-infinite interval but also incorporates 
difficulties encountered in isolating eigenvalues associated with exponential decay. 
Consequently a model equation exhibiting analogous behavior is first examined to test 
the efficacy of the method with respect to this additional difficulty. Subsequently 
various investigations with respect to the title problem are described which highlight 
the possibility of optimizing an inherent flexibility of the method. The final formulation 
confirms that the method may indeed be used successfully to obtain eigenvalues for 
this type of problems which so often occurs in boundary layer theory. 

2. AN OUTLINE OF THE METHOD 

The method described by Scott [l] for the problem defined by (1) and (2) is based 
on the introduction of an n x it matrix R(z) by means of the transformation 

u(z) = R(z) v(z). (3) 

It is readily shown that if R satisfies the matrix Riccati equation 

R’(z) = B(z, u) + A@, 0) R(z) + R(z) Wz, u) + R(z) C(z, 0) R(z) (4) 

and if v(z) is a solution vector then the associated solution vector u(z) is given by (3). 
Here the superposed dash denotes d/dz. The condition u(0) = 0 permits the integration 
of (4) using the initial condition R(0) = 0. Characteristic lengths are values z = x 
where U(X) = 0, and this terminating condition is only satisfied when 

det R(x) = 0. (5) 

In the course of the integration there may be points at which det R(z) is singular and 
these are traversed by switching to S(z) = R-l(z) which satisfies 

-S’(z) = C(z, u) + S(z) A(z, u) + D(z, u) S(z) + S(z) B(z, u) S(z). 02 
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Values of z at which det S(z) = 0 are characteristic lengths for the problem with 
terminating condition V(X) = 0. 

Scott’s work was extended by Sloan and Wilks [2] to deal with the general linear 
separated boundary conditions 

%~(O) + IslW) = 0, “24X) + p&4 = 0, (7) 

where the real matrices [a1 , /3J and [aZ, pz] h ave d imensions IZ x 2n and rank n. The 
vectors u and v may be chosen in such a way that 01~ = I and flz = 0, in which case 
the boundary conditions take the form 

w@) + BlV(O) = 0, u(x) = 0. (8) 

Sloan and Wilks tackled the problem (1) and (7) by suitably transforming the depen- 
dent variables. If 

(9) 

with y1 and 6, chosen such that A4 is nonsingular, then the condition at z = 0 takes 
the form 

U(0) = 0. (10) 

The possibility of dealing with problems with separated boundary conditions and 
with 12 = 1 using a linear transformation of dependent variables is mentioned in the 
book by Scott [3]. Relating U and V by 

U(z) = E(z) V(z) (11) 

we readily derive the Riccati equation 

The condition U(0) = 0 shows that E(0) = 0. Here &, a’, %‘, and $9 are coefficient 
matrices in the linear differential system when it is written in terms of U and V. 

If the original vectors u and v have been chosen such that the boundary conditions 
are of type (8), the condition at z = x is then similar to that considered by Scott [l] 
and characteristic lengths may be located using criterion (5). In order to use this 
criterion a switch is made from the E-system to the R-system at some point z = I > 0 
using the transformation 

R(Z) = [aI - ~Whl-W4 6, - Al. (13) 

Note that at z = 5 the matrix [01~-- E(Z) rl] must be nonsingular. The method adopted 
in this paper for the location of characteristic lengths is that outlined above for a 
system (1) subject to boundary conditions (8). 
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The procedure for obtaining characteristic lengths is now 

(i) initiate integration of the E-system of Eqs. (12) using 

E(0) = 0; 

(ii) at a suitable point away from singularities of [a1 - E(Z) rl] switch to the 
R-, S-scheme using (13); 

(iii) proceed as before to locations at which 

det R(x) = 0. 

One could, of course, perform the complete integration in terms of the E-system, 
traversing singularities in det E by means of a complementary system involving E-l. 
In this case the terminating condition could be expressed in terms of the E-compo- 
nents. This procedure is illustrated in the accompanying paper by Sloan [5]. 

3. AN EXAMPLE 

In the Introduction it was noted that the isolation of eigenvalues associated with 
exponential decay provides a particular difficulty in examinations of perturbations 
about the Blasius profile. Accordingly the method is first examined in a context 
exhibiting analogous behavior. The equation 

y”(z) + zy’@) + u.Y(z) = 0 (14) 

subject to the boundary conditions 

Y(O) = 0; Y(Z) - 0 asz-co (15) 

has a continuous spectrum of eigenvalues for (T > 0. Solutions associated with this 
spectrum however exhibit algebraic decay at infinity. If only those solutions exhibiting 
exponential decay are acceptable then the discrete set of eigenvalues c = 2, 4, 6,..., 
2n,... is appropriate. 

It is interesting to speculate as to what one might anticipate of the application of 
the method over a semi-infinite interval. In an example with a finite interval, z = 0 
to z = x, the typical pattern of events would, as for any initial-value method, essen- 
tially be an assembly of information generating curves u = CJ~(X) as in Fig. 1. 

Eigenvalues associated with a particular value x = L may then readily be extracted 
by interpolation. What one might expect therefore of curves oi(x) in a semi-infinite 
context is a behavior asymptotic to the desired eigenvalues as x -+ co. An investigation 
of this conjecture is readily performed by solving Eq. (14) subject to 

Y(O) = 0; y(x) = 0. (16) 
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If Eq. (14) is represented as the pair of first-order equations 

YI’W = Y(Z), 

YS’W = -ZYsW - UYl(Z>, 

XZL x 

FIGURE 1 

L- _ _ __ ___ _ __ 
L ?,_ ----_------- ____ --_------- b ‘I e ---__---_--_---- 2 --------------- 

(17) 

FIG. 2. Exponential decay eigenvalues. 



308 WILKS AND BRAMLEY 
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FIG. 3. R, S schemes exhibiting u = 2, 4, 6, 8, 10 as demarcation values for zeros of R. 
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then in the notation of the method outlined in Section 2 we have 

and 
Yl(Z) = 44; Y2(4 = fm 
(du/dz)(z) = 0 * u(z) + 1 * C(Z), 

-(dl;/dz)(z) = 0 ’ u(z) + z . o(z), 
so that 

A(z, CT) = 0, I?(& u) = 1, C(z, u) = cr, D(z, u) = z. 

(181 

(1% 

The associated Riccati equation and its complement are thus 

R’(z) = 1 + G?(z) + uR(z)2, (20) 

s’(z) = -u - zS(z) - S(z)2. (21) 

Integration of (20) is initiated using R(0) = 0 and proceeds, switching to (21) when 
necessary, establishing characteristic lengths x where 

R(x) = 0. 

The simplicity of formulation and implementation is self-evident. The results of 
integrations for various u using a standard fourth-order Runge-Kutta procedure 
with step length 0.05 and tolerance 1 x 1O-s are presented in Fig. 2. Accuracy to four 
decimal places, at least, was obtained for eigenvalues 2, 4, 6, 8, and 10 with no signs 
of instability or degeneracy for higher values of u. In Fig. 3 curves of R(z) and S(z) 
for two values of u displaced by 1 x lo-* about the discrete set 2, 4, 6, 8, 10 demon- 
strate . the implications of the search for locations R(x) = 0 for which nontrivial 
solutions exist. 

The success of the method in isolating the discrete set of eigenvalues associated 
with exponential decay is thus exemplified. It is interesting to note the similarity 
between this procedure and that suggested by Stewartson [6] for obtaining. unique 
solutions of the Falkner-Skan equations for /3 < 0. Solving over a finite interval 
and letting that interval tend to infinity is very much in the spirit of that author’s 
remarks on selecting the acceptable solutions out of a semi-infinite family of solutions 
satisfying the boundary conditions. 

4. THE PROBLEM 

The mathematical problem is to find eigenvalues CT, which give rise to nontrivial 
solutions of the homogeneous ordinary differential equation 
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subject to the homogeneous boundary conditions 

y(0) = y’(0) = 0; y’(z) -+ 0 exponentially as z + co. (23) 

Dashes denote derivatives with respect to the independent variable z andf,(z) is the 
Blasius solution for the uniform flow of a viscous, incompressible flow past a semi- 
infinite plate defined by 

f:(z) + fo<z>fJz) = 0 (24) 

with 
h(O) = h’(O) = 0; h’(a) = 1, 

(25) 
(f;(O) = 0.469600). 

The problem is of interest in two contexts. The first is based on a demonstration by 
Libby and Fox [7] that eigenfunctions of (22) form a complete orthogonal set with 
respect to functions having exponential decay at infinity. In this context the orthogo- 
nality property is exploited and an approximation technique, involving series 
expansions in terms of the complete set of eigenfulctions, is developed to deal with 
a variety of flow situations including heat and mass transfer [7, 81. Although the first 
few eigenvalues were estimated in [7] the authors acknowledged that their method for 
obtaining these degraded in accuracy as successively higher eigenvalues are sought. 
Libby [9] returned to the problem with a view to obtaining an extended set of eigen- 
values and eigenfunctions having noted that in application the approximation 
technique involved slowly convergent series and the consequent need for further terms. 
An improved method of computing the required eigenvalues was presented using 
backward integration based on asymptotic analysis. These extended results are taken 
to be the most accurate available at the present time. The agreement between these 
estimates and those forecast by Brown [lo] after improving an asymptotic expansion 
for higher eigenvalues presented by Stewartson [l l] supports this belief. 

The second context is associated with higher order boundary layer theory. Tn 
coordinate asymptotic expansions about the Blasius solution the locations of the 
first few eigenvalues play an important part in appreciating the correct form of.such 
an asymptotic expansion. 

5. PRELIMINARY INVESTIGATIONS 

Having demonstrated that the method may be expected to deal with the semi- 
infinite interval of the problem and successfully isolate exponential decay eigenvalues 
it remains to accommodate the odd order of the problem within the even order 
formulation of the method. Since fO’ is a complementary solution, but not an eigen- 
function, of Eq. (22) this equation may be reduced to a second-order differential 
equation. This reduced equation, however, is not amenable to Riccati formulation 
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and accordingly as a first step we examine the even order equation obtained from a 
single differentiation of Eq. (22) namely, 

Y’“(Z) + f,(z) y”‘(z) + f,‘(z)(l + 4 Y”(Z) + f;(z) Y’(Z) + (1 - 0) f;(z) Y(Z) = 0. (26) 

The implementation of the method then requires the specification of a fourth boundary 
condition at a finite location z = x which will, in the limit x -+ cc, yield appropriate 
behavior at infinity and also provide solutions pertinent to the original third-order 
system. The choice of this fourth boundary condition proves to be particularly 
significant in the course of extracting characteristic lengths from the associated 
systems. 

I. Approximate Boundary Conditions 

The Blasius solution of Eq. (24) subject to (25) has asymptotic behavior as z -+ 00 
given by 

fo(z) N- z - Cl 2 f,‘(z) = 1, fJz> = c2 exp [-(z - c,Wl (27) 

where 
cl = 1.21676; cg = 0.33054. 

For z sufficiently large so that 

(z - cl)-’ exp[-(z - Q/2] < 3/c, , (28) 

Eq. (22) takes the asymptotic form 

and 
Y3> + (z - Cl) Y:(z) + UYm’(Z) = 0 (29) 

ym’(z) N al(z - c&-(~--O) exp[-(z - cJ2/2] + a2(z - cl)-0 

+ a,exp[-(z - cd2121 (30) 

where a,, a2, a3 are arbitrary constants. The isolation of solutions exhibiting 
exponential decay is achieved if 

0 = y:(z) + (z - cl> y,‘(z)[l + (1 - u>(z - cl)-“1 = a2 (31) 

is satisfied. In view of these features for large z two approximate fourth boundary 
conditions were examined 

(4 YW = 0, 

(‘4 Y”(X) + (x - Cl) Y”(X) + UY’(X) = 0. 
(32) 

931/24/3-7 
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With Eq. (28) represented as the set of four first-order differential equations 

Yl’(Z> = Y2(Z>, 

Y2W = YdZ), 

Y3Y.4 = Y4@), 
(33) 

Y4W = --AM Y4W - he) . (1 + 4 YSW - fo”W Y*(Z) - (1 - 4 *f,“(z) YlG) 

an E-system appropriate to the initiation procedure of [2] and suitable for either 
condition (a) or (b) is obtained from a formulation with 

as 

u=(;)=(;$); vq;jq;;;;j 2 
E,’ = E3 + E,f,’ . (1 + c) + E,E,f,” . (1 - o) + E,E,f;, 

E,’ = E4 - El + Ezfo + E2’.f/. (1 - CT) + E,E,f,” 
(34) 

E; = 1 + E,, - fo’ . (1 + 0) + EXE4 .f; * (1 - u) + E3E&“, 

E4’ = -E, + E& + E,E, *.&“‘(l - a) + I?&;. 

An integration of this system commencing from 

E<(O) = 0 (i = 1, 2, 3, 4) 

exhibits no singularities over the range of (5 examined. This is particularly convenient 
in view of the correlation between E and R given by (13), which can be inverted to 
read 

E(z) = b,R + BdrlR + W 

in the notation of Section 2. 
Since the R, S formulation would require 

(35) 

Y2 

u = (4 Y3 v= Yl 

(b) y4 + (z - cd Ya + b’2 
( 1 Y4 

the correlations between (II, v) and (U, V) are given by 

(a) aI = (; 8); 81= (; i); Yl= (; A); 4 = (; ;, 

(b) al = ; 0" ; 
( ) a = (; ;) ; Yl=(-f ;,; s1 = (8 -(z '_ Cl)) 

(39 
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which in (35) yield 

(a) 

@I E(z) = l ( aR2 - R4 + (z - cl) 1 
R3 - aR, R,(z - cl) - det R RI > . 

(37) 

The implications are clear. Since the E-system (34) displays no singularities, 
monitoring the locations at which 

(4 E4(z) = 0 UG f 01, 

@> Es(z) - (z - cl) E4 = 0 (4 - u& # Oh 
(38) 

is precisely equivalent to monitoring the respective criterion for characteristic lengths, 
det R(x) = 0. No recourse to the R-, s-system is required. On examining this feature 
results were obtained entirely in agreement with the conjecture of Section 3. However, 
close inspection of the asymptotes evolving displayed a degradation of accuracy in 
estimates of successively higher eigenvalues. See Table I. 

TABLE I 

Wilks and Bramley 

n Libby and Fox 

1 2.000 
2 3.174 
3 5.635 
4 7.600 
5 9.480 
6 11.3 
7 13.2 
8 15.1 
9 16.9 

10 18.7 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Libby 

2.000 
3.774 
5.629 
7.513 
9.414 

11.327 
13.247 
15.173 
17.104 
19.040 
20.979 
22.920 
24.865 
26.811 
28.760 
30.710 
32.662 
34.615 
36.570 
38.526 

Brown I(a) I(b) II Exact 

2.000 2.000 2.000 
3.775 3.774 3.774 
5.632 5.630 5.629 
7.530 7.520 7.515 

32.660 
34.613 
36.567 
38.524 

General 
exact 

2.OOoO 
3.7736 
5.6287 
7.5132 
9.4144 

11.3265 
13.2467 
15.1731 
17.1044 
19.0397 
20.9784 
22.9201 
24.8642 
26.8107 
28.7591 
30.7093 
32.6611 
34.6143 
36.5689 
38.5247 
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II. An Exact Boundary Condition 

If the general solution of Eq. (22) is denoted by Y*(z) then the fact that Eq. (26) is 
the first derivative of Eq. (22) requires that the general solution Y(z) of Eq. (26) must 
be 

Y(z) = Y*(z) + cm (39) 

where c is an arbitrary constant and g(z) is any solution of the inhomogeneous form 
of Eq. (22) 

Y”(Z) +f,w Y”(Z) + dy(z) Y’(Z) + (1 - 4.m) Y(Z) = 1 
or 

UYW = 1, 
say. Then at any point x 

W) 

(41) 

L[Y(x)] = L[Y*(x)] + cL[g(x)] = c. (42) 

The implication must be that equivalence of the even order formulation with the 
original problem is achieved by incorporating as additional boundary condition 

L[Y(x)] = 0 
that is 

Y”(X) + few Y”(X) + d&4 Y’(X) + (1 - 4 f,“<4 Y(X) = 0. (43) 

Equation (43) is thus deemed to be an exact supplementary boundary condition. 
With 

u = ($:;I ; v = (;;I:,’ 4.&(z) y,(z) + ujp) y,(z) + (1 - u)fo”(z) yl(z) ’ ) w, 2 

and the appropriate Riccati initiation E-system is 

E,’ = E3 + E1 .fO + E12 *&,“a (1 - u) + EIEs . u .fO’, 

E2’=E,-EI+EIE2*f,“~(1-u)+EIE,~u~~’, 
(46) 

E; = 1 + Es .fo + E1E3 . fo” . (1 - u) + Et . a . fo’, 

E4’ = -E, + E2 . E, . f; . (1 - u) + E,E, . u . f,‘, 

with, again 
E,(O) = 0 (i = 1, 2, 3,4). (473 
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Outward integration of this system is limited by a singularity and recourse to the 
R-, S-system is required. After setting 

” = 
( 
(Y24 
Y&) + h(z) Y&4 + ufo’(z> * YZW + (1 - u>fo”(z> * YdZ) 

) ; v  = (;g) > 

the R-, S-systems are 

R,’ = (1 - a) * f,“R, - R; -I- ufo' - R,R, - R,R, , 

R,’ = 1 + foRz - RIR, + ufo’ . R2’ - R,& , 

and 

RS’ = f,” . (1 - CT) ’ R4 - RIRs + of,‘R,R, - R3R,, 

Rql = f. . R, - R,R, + of; . R,R, - Ra2, 

s,’ = 1 - s,s, , 

s,’ = -s,s, ) 

S,’ = -u - fo’ - s, .fo” * (1 - u) - f0 * s, - &2, 

s,l = 1 - s, * fo” * (1 - 0) - fos, - s,s, . 

(50) 

(51) 

When the procedure outlined in Section 2 is implemented in the search for 
characteristic lengths, x, given by 

det R(x) = 0 (52) 

results entirely in keeping with the conjecture of Section 3 are again obtained. More- 
over, the degeneracy in accuracy is no longer in evidence and precise estimates of the 
first four eigenvalues were obtained as in Table I. However this first attempt at an 
exact solution is hindered by another phenomenon which occurs as successively 
higher eigenvalues are sought. Although it is accepted that singularities in the E-, R-, 
S-systems are likely to occur, which the switching procedure normally accommodates, 
if a zero of det R(x) = 0 approaches coincidence with such a singularity then the 
isolation of x becomes difficult. This tendency to coincidence of a zero and a singularity 
is apparent in the search for the fourth eigenvalue and immediately after the location 
of the fourth zero the equations become unintegrable. 

These preliminary investigations are instructive. The experience with the appro- 
ximate boundary conditions highlights the fact that although the machinery exists 
within the method to accommodate singularities in the associated systems via 
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switching, this machinery need not necessarily be invoked. The implication from the 
exact boundary condition examination is that the most obvious exact boundary 
condition need not necessarily be the most efficient. There is advantage to be gained 
in exploiting the inherent flexibility of the method, either in the selection of vectors 
of dependent variables or equivalently in the method of rendering even the original 
odd order system. Accordingly the following section outlines a generalized exact 
formulation of the problem out of which an optimal procedure arises incorporating 
a nonsingular R-system. 

6. THE GENERALIZED EXACT FORMULATION 

In Section 5 investigations were based on the fourth-order system generated by 
differentiating the original equations. This not the only means of evening up the system. 
In this section we illustrate a manipulation of the inherent flexibility within the method 
of the choice of vectors of dependent variables. An optimum choice in terms of 
computational advantage becomes apparent. 

Consider the original Eq. (22) as the system of three first-order differential equations 

Yl’ = Y2 2 

Yz' = 2'3 3 (53) 

Y3' = -h . Y3 - 6' * Y2 - (1 - 4.K . Yl > 

and augment the system with the dummy equation for a function p(z) such that 

p’(z) = y4’(z) = 0; p(x) = 0. w  

An E-system preserving initiation &(O) = 0 is obtained after setting 

However it may be shown that the solution of this system with E(O) = 0 has the 
elements E2 and E4 identically zero. Since the matrix [CQ - E(z) rl] is therefore 
singular it proves impossible to proceed to the R-, S-scheme of equations. Indeed a 
closer inspection of this simple augmentation reveals that it is impossible to generate 
two linearly independent solutions satisfying U(0) = 0 and that any eigenfimction U, 
of the system, under this initial condition can only be a multiple of a single base vector 
&(z), say. This is no longer a restriction if a constant multiple of p = ya is added to 
any or all of the dependent variables y1 , yZ , y3 . In practice this is equivalent to an 
examination of the system 

Yl' = Y2 + klY4 9 

Y,' = ~3 + bya 2 
(55) 

~3' = --SOYS - &'r2 - (1 - 4fajl + bya 9 

y4' = 0. 
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Provided that at least one member of the triad (k, , k, , k3) is nonzero the associated 
E-system will yield [a1 - E(z) rl] nonsingular. 

Maintaining full generality the R-system is 

El’ = E, + Elf0 + El2 . (1 - u)fo” + ElEsuf,‘, 

E,’ = k, + E4 + Elk, + E&z * (1 - u)fo” + ElEefo’, 
(56) 

and 

E,’ = 1 + E, fo + E,E, . (1 - u) fo” + E&f,‘, 

E4’ = k, + E3k3 + E,E, . (1 - 0) f,” + EsEduf;, 

E,(O) = 0; i = 1,2,3,4. 

The flexibility of the system and the implications with respect to the E, R, S scheme 
have been investigated by allocating the value unity to each ki in turn, the net effect 
being independent of magnitude or sign of a nonzero ki . With the triads (1, 0,O) 
and (0, 0, 1) exactly the same difficulty arises as was outlined for the exact boundary 
condition in Section 5. The R-system becomes unintegrable after a zero in det R. 
Indeed the triad (0, 0, 1) coincides with the exact boundary condition formulation of 
Section 5. However, on employing the triad (0, 1,0) the related R-system displays no 
singularities and the monitoring of zeros of det R proves to be particularly straight- 
forward. 

7. RESULTS AND DISCUSSION 

Once the particular advantages of the triad (0, 1,0) becomes apparent, attention is 
naturally focused on the use of the appropriate system out of Eq. (56) and the asso- 
ciated R-system 

R,’ = R, + R2 . (1 - u) f; + ufo’R,R, - R12, 

R,’ = 1 i- R, + foRz f ufoJRz2 - R,R, , 
(57) 

R,’ = R4 ’ (1 - u)f,” + ufo’R,R, - R,R,, 

R,’ = fOR4 -t of; R,R, - R2R, . 

In particular it is to be established whether or not calculation of higher eigenvalues 
will lead to any degeneracy of accuracy or further integration problems. In an 
investigation of these questions no complications in fact arise. The only noteworthy 
feature occurring as estimates for higher eigenvalues are sought concerns the behavior 
of det R which turns out to oscillate with decreasing amplitude as z increases. Conse- 
quently as higher eigenvalues are sought the number of oscillations of det R increases 
and amplitudes involved become extremely small, e.g., O(lO-Zo). However an exami- 
nation of the elements of R reveals that RI and R, are of comparable order of 
magnitude, as also are R, and R, . The use of specified relative error limits during 
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integration of the R-system thus ensures no loss of accuracy in characteristic length 
location. 

Accordingly we present in Table I what we believe to be accurate evaluations of the 
first twenty eigenvalues. The results of earlier workers are included for comparison. 
Of particular note is the favorable comparison of these numerical evaluations with 
asymptotic estimates of Brown [lo]. 

The associated curves ui(z) revealing the confirmation of the asymptotic conjecture 
are illustrated in Fig. 4. An interesting feature is that ur and g2 originate from the 
same point, as do ~7~ and u, . This has implications in terms of the total zeros to be 
monitored for higher eigenvalue evaluations. 

The investigations described in this paper have been of an exploratory nature and 
it would certainty be premature to conclude other than that the method has been made 
to work for this particular problem. Comparisons with other well established methods 
would be inappropriate at this stage. The final formulation used to obtain results is 
however very straightforward to implement, efficient in its use of computer time and 
storage and yields accurate results, and is accordingly attractive once arrived at. The 
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FIG. 4. Curves o&x) for Blasius profile. 
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problem outstanding is that of optimization for computational purposes of the choice 
of arrays of dependent variables. Should it be possible to select immediately an 
appropriate optimal choice for this type of problem then the method may indeed prove 
competitive with those currently in the literature. 
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